22 research outputs found

    Connectivity, neutral theories and the assessment of species vulnerability to global change in temperate estuaries

    Get PDF
    One of the main adaptation strategies to global change scenarios, aiming to preserve ecosystem functioning and biodiversity, is to maximise ecosystem resilience. The resilience of a species metapopulation can be improved by facilitating connectivity between local populations, which will prevent demographic stochasticity and inbreeding. The objective of this investigation is to estimate the degree of connectivity among estuarine species along the north-eastern Iberian coast, in order to assess community vulnerability to global change scenarios. To address this objective, two connectivity proxy types have been used based upon genetic and ecological drift processes: 1) DNA markers for the bivalve cockle (Cerastoderma edule) and seagrass Zostera noltei, and 2) the decrease in the number of species shared between two sites with geographic distance; neutral biodiversity theory predicts that dispersal limitation modulates this decrease, and this has been explored in estuarine plants and macroinvertebrates. Results indicate dispersal limitation for both saltmarsh plants and seagrass beds community and Z. noltei populations; this suggests they are especially vulnerable to expected climate changes on their habitats. In contrast, unstructured spatial pattern found in macroinvertebrate communities and in C. edule genetic populations in the area suggests that estuarine soft-bottom macroinvertebrates with planktonic larval dispersal strategies may have a high resilience capacity to moderate changes within their habitats. Our findings can help environmental managers to prioritise the most vulnerable species and habitats to be restored

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Genomes Vary in Size and Spatial Patterns Within Chimeric Blades of <i>Porphyra</i> spp.

    Get PDF
    Genome size variation is of crucial biological importance, however variation in genome sizes within a single individual/organism is rarely reported except for some species groups such as algae where polygenomy, endopolyploidy and mixopolyploidy have previously been reported. The red algal genus Porphyra forms part of very profitable marine food products commonly known as ‘Nori’. Farming of these valuable marine crops was revolutionized by the discovery of their life cycle in the 40’s. One of the most remarkable characteristics of these taxa is the formation of chimeric gametophytic thalli. After meiosis, the four meiotic products are not released as individuals spores, but instead develop together into a single leafy thallus through successive mitotic divisions. In this study, we used flow cytometry to estimate genome sizes in 670 vegetative thallus sections from 195 blades from three Porphyra species, to determine if this chimerism could be related to the presence of multiple genome sizes and mixoploidy within thalli. Our results show a wide variety of genome sizes both within and between thalli. We interpreted these results as the presence of two different genome types of different sizes (a and b) with separate rounds of genome duplications within the vegetative thalli. By analyzing several sections per thallus, we were able to show that the different genome types and ploidy levels are not distributed haphazardly through the thallus, but are distributed along the thallus in a sectorial way in mosaics. In some individuals, the 2C genome size can either be interpreted as diploids or alternatively as haploid cells that are arrested at the G2-stage of the mitotic cycle, acting as diploid with two copies of their genome during most of their life-time. We conclude that Porphyra species belong to an aneuploid/euploid system, where genome duplications, mixoploidy, chromosomal dynamics and the presence of different genome types in the chimeric thalli play a role in shaping the genetic diversity of these taxa. Our results may have important implications to understand red algae biology and evolution and raise further questions on concepts of what constitutes an individual
    corecore